Posts Tagged transcranial stimulation

Zap Your Way to Learning?

The company Halo Neuroscience is now offering a device, the Halo-Sport, which they claim enhances sports performance through “neuropriming.” Their website claims:

Neuropriming uses pulses of energy to increase the excitability of motor neurons, benefiting athletes in two ways: accelerated strength and skill acquisition.

Regular readers of SBM can probably see where this is going.

A proper threshold of evidence

Before I get into the details of this product, I want to back up and discuss some basic principles. There is a clear pattern that has played itself out countless times on SBM or with regular authors on SBM in their other outlets. A person, company, or industry makes a clinical medical claim. We examine the evidence and find it wanting, and state so. Believers in the claim then attack us for being shills, closed minded, and/or failing to do our research.


Posted in: Neuroscience/Mental Health

Leave a Comment (0) →

Brain Stimulation for the Masses

In the last decade or so there has been increasing research into non-invasive brain stimulation techniques for a variety of conditions. These include transcranial direct current stimulation (tDCS), transcranial alternating current stimulation (tACS), random noise stimulation (tRNS), and transcranial magnetic stimulation (TMS). These techniques alter the excitability of neurons in the brain, seem to have an effect on plasticity (the ability to form new connections), and can modulate the activity of brain networks.

Overall the current research is preliminary but encouraging. Many of the details of exactly how to apply this new technology, however, are still being worked out. One recent review summarizes this complexity:

tDCS can be used to manipulate brain excitability via membrane polarisation: cathodal stimulation hyperpolarises, while anodal stimulation depolarises the resting membrane potential, whereby the induced after-effects depend on polarity, duration and intensity of the stimulation. A variety of other parameters influence tDCS effects; co-application of neuropharmacologically active drugs may most impressively prolong or even reverse stimulation effects. Transcranial alternating stimulation (tACS) and random noise stimulation (tRNS) are used to interfere with ongoing neuronal oscillations and also finally produce neuroplastic effects if applied with appropriate parameters.


Posted in: Neuroscience/Mental Health

Leave a Comment (11) →